Iloprost improves running performance at 5,000 m in Han but not in Tibetans

Bengt Kayser, Jui-Lin Fan, Liya Nan, Wang Liang Bang, Bianba & Tianyi Wu


Background: Tibetans experience lose less aerobic exercise capacity in hypoxia compared to lowland Han. We tested if inhalation of iloprost (to counter hypoxic pulmonary vasoconstriction) and furosemide (to decrease afferent vagal traffic from pulmonary receptors) improve performance in hypoxia in Han compared to Tibetans. Methods: 8 Tibetans and 8 Han, living at 2,260 m, did incremental uphill treadmill running to exhaustion at ambient pressure on day 1, followed by three runs at 5,000 m (hypobaric chamber) after inhalation of iloprost (ILO), furosemide (FUR) or placebo (PLA), on different days in a counter-balanced order. Results: In Han the performance decrement from 2,260 m to 5,000 m was greater than in Tibetans (p<0.05). In Han iloprost improved performance at 5,000 m compared to placebo (p<0.05 vs. PLA); furosemide had no effects. In Tibetans there were no treatment effects. Peripheral O2saturations at peak exercise at 5,000 m, were higher by 8 % in the Tibetans (p<0.05 vs. Han). Maximum heart rate was lowered by 13±6 bpm in Han at 5,000 m regardless of treatment compared to 2,260 m (p<0.05). Tibetans reached similar maximum heart rates ∼200 bpmat 5,000 m and 2,260 m, independent of treatment. Conclusions: The blunting of the exercise impairment in severe hypoxia in Han during maximal exercise after inhalation of iloprost suggests that hypoxic pulmonary vasoconstriction and right ventricular function are potential performance limiting factors in Han in hypoxia.


altitude, cardiac, pulmonary, right ventricle, heart rate, performance

Full Text:



Amann, M., & Calbet, J. A. L. (2008). Convective oxygen transport and fatigue. Journal of Applied Physiology (Bethesda, Md. : 1985), 104(3), 861–870.

Amann, M., & Kayser, B. (2009). Nervous system function during exercise in hypoxia. High Altitude Medicine & Biology, 10(2), 149–164.

Amann, M., Eldridge, M. W., Lovering, A. T., Stickland, M. K., Pegelow, D. F., & Dempsey, J. A. (2006). Arterial oxygenation influences central motor output and exercise performance via effects on peripheral locomotor muscle fatigue in humans. The Journal of Physiology, 575(Pt 3), 937–952.

Amann, M., Romer, L. M., Subudhi, A. W., Pegelow, D. F., & Dempsey, J. A. (2007). Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans. The Journal of Physiology, 581(Pt 1), 389–403.

Anholm, J. D., & Foster, G. P. (2011). Con: Hypoxic pulmonary vasoconstriction is not a limiting factor of exercise at high altitude. High Altitude Medicine & Biology, 12(4), 313–317.

Anholm, J. D., Milne, E. N., Stark, P., Bourne, J. C., & Friedman, P. (1999). Radiographic evidence of interstitial pulmonary edema after exercise at altitude. Journal of Applied Physiology, 86(2), 503–509.

Bao, X., Kennedy, B. P., Hopkins, S. R., Bogaard, H. J., Wagner, P. D., & Ziegler, M. G. (2002). Human autonomic activity and its response to acute oxygen supplement after high altitude acclimatization. Autonomic Neuroscience, 102(1), 54–59.

Bhagat, R., Yasir, A., Vashisht, A., Kulshreshtha, R., Singh, S. B., & Ravi, K. (2011). High altitude simulation, substance P and airway rapidly adapting receptor activity in rabbits. Respiratory Physiology & Neurobiology, 178(2), 329–336.

Boushel, R., Calbet, J. A. L., Radegran, G., Sondergaard, H., Wagner, P. D., & Saltin, B. (2001). Parasympathetic neural activity accounts for the lowering of exercise heart rate at high altitude. Circulation, 104(15), 1785–1791.

Brutsaert, T. D., Parra, E., Shriver, M., Gamboa, A., Palacios, J.-A., Rivera, M., et al. (2004). Effects of birthplace and individual genetic admixture on lung volume and exercise phenotypes of Peruvian Quechua. American Journal of Physical Anthropology, 123(4), 390–398.

Cremona, G., Asnaghi, R., Baderna, P., Brunetto, A., Brutsaert, T., Cavallaro, C., et al. (2002). Pulmonary extravascular fluid accumulation in recreational climbers: a prospective study. The Lancet, 359(9303), 303–309.

Dempsey, J. A., & Wagner, P. D. (1999). Exercise-induced arterial hypoxemia. Journal of Applied Physiology (Bethesda, Md. : 1985), 87(6), 1997–2006.

Fan, J.-L., & Kayser, B. (2016). Fatigue and exhaustion in hypoxia: The role of cerebral oxygenation. High Altitude Medicine & Biology, 17(2), 72–84.

Favret, F., & Richalet, J.-P. (2007). Exercise and hypoxia: The role of the autonomic nervous system. Respiratory Physiology & Neurobiology, 158(2-3), 280–286.

Ferretti, G., Moia, C., Thomet, J. M., & Kayser, B. (1997). The decrease of maximal oxygen consumption during hypoxia in man: a mirror image of the oxygen equilibrium curve. The Journal of Physiology, 498 ( Pt 1), 231–237.

Ghofrani, H. A., Reichenberger, F., Kohstall, M. G., Mrosek, E. H., Seeger, T., Olschewski, H., et al. (2004). Sildenafil increased exercise capacity during hypoxia at low altitudes and at Mount Everest base camp: a randomized, double-blind, placebo-controlled crossover trial. Ann Intern Med, 141(3), 169–177.

Groves, B. M., Sutton, J., Droma, T., McCullough, R. G., McCullough, R. E., Zhuang, J., et al. (1993). Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. Journal of Applied Physiology, 74(1), 312–318.

Jensen, D., Amjadi, K., Harris-McAllister, V., Webb, K. A., & O'Donnell, D. E. (2008). Mechanisms of dyspnoea relief and improved exercise endurance after furosemide inhalation in COPD. Thorax, 63(7), 606–613.

Kayser, B., Narici, M., Binzoni, T., Grassi, B., & Cerretelli, P. (1994). Fatigue and exhaustion in chronic hypobaric hypoxia: influence of exercising muscle mass. Journal of Applied Physiology (Bethesda, Md. : 1985), 76(2), 634–640.

Koglin, L., & Kayser, B. (2013). Control and sensation of breathing during cycling exercise in hypoxia under naloxone: a randomised controlled crossover trial. Extreme Physiology & Medicine, 2(1), 1.

Lee, L.-Y., & Pisarri, T. E. (2001). Afferent properties and reflex functions of bronchopulmonary C-fibers. Neuroscience & Biobehavioral Reviews, 125(1-2), 47–65.

Lundby, C., & van Hall, G. (2001). Peak heart rates at extreme altitudes. High Altitude Medicine & Biology, 2(1), 41–45.

Marconi, C., Marzorati, M., Grassi, B., Basnyat, B., Colombini, A., Kayser, B., & Cerretelli, P. (2004). Second generation Tibetan lowlanders acclimatize to high altitude more quickly than Caucasians. The Journal of Physiology, 556(Pt 2), 661–671.

Naeije, R. (2011). Pro: Hypoxic Pulmonary Vasoconstriction Is a Limiting Factor of Exercise at High Altitude. High Altitude Medicine & Biology, 12(4), 309–312.

Naeije, R., & Chesler, N. (2012). Pulmonary circulation at exercise. Comprehensive Physiology, 2(1), 711–741.

Naeije, R., & Dedobbeleer, C. (2013). Pulmonary hypertension and the right ventricle in hypoxia. - PubMed - NCBI. Experimental Physiology, 98(8), 1247–1256.

Naeije, R., Huez, S., Lamotte, M., Retailleau, K., Neupane, S., Abramowicz, D., & Faoro, V. (2010). Pulmonary artery pressure limits exercise capacity at high altitude. European Respiratory Journal, 36(5), 1049–1055.

Newton, P. J., Davidson, P. M., Macdonald, P., Ollerton, R., & Krum, H. (2008). Nebulized furosemide for the management of dyspnea: Does the evidence support its use? Journal of Pain and Symptom Management, 36(4), 424–441.

Nielsen, H. B. (2003). Arterial desaturation during exercise in man: implication for O2 uptake and work capacity. Scandinavian Journal of Medicine and Science in Sports, 13(6), 339–358.

Niu, W., Wu, Y., Li, B., Chen, N., & Song, S. (1995). Effects of long-term acclimatization in lowlanders migrating to high altitude: comparison with high altitude residents. European Journal of Applied Physiology and Occupational Physiology, 71(6), 543–548.

Olschewski, H., Simonneau, G., Galiè, N., Higenbottam, T., Naeije, R., Rubin, L. J., et al. (2002). Inhaled Iloprost for Severe Pulmonary Hypertension. The New England Journal of Medicine, 347(5), 322–329.

Parshall, M. B., Schwartzstein, R. M., Adams, L., Banzett, R. B., Manning, H. L., Bourbeau, J., et al. (2012). An official American Thoracic Society statement: Update on the mechanisms, assessment, and management of dyspnea. American Journal of Respiratory and Critical Care Medicine, 185(4), 435–452.

Paton, J. F. (1998). Pattern of cardiorespiratory afferent convergence to solitary tract neurons driven by pulmonary vagal C-fiber stimulation in the mouse. Journal of Neurophysiology, 79(5), 2365–2373.

Scheinfeldt, L. B., Soi, S., Thompson, S., Ranciaro, A., Woldemeskel, D., Beggs, W., et al. (2012). Genetic adaptation to high altitude in the Ethiopian highlands. Genome Biology, 13(1), R1.

Simonson, T. S., McClain, D. A., Jorde, L. B., & Prchal, J. T. (2012). Genetic determinants of Tibetan high-altitude adaptation. Human Genetics, 131(4), 527–533.

Simonson, T. S., Wei, G., Wagner, H. E., Wuren, T., Bui, A., Fine, J. M., et al. (2014). Increased blood-oxygen binding affinity in Tibetan and Han Chinese residents at 4200 m. Experimental Physiology, 99(12), 1624–1635.

Sun, S. F., Droma, T. S., Zhang, J. G., Tao, J. X., Huang, S. Y., McCullough, R. G., et al. (1990). Greater maximal O2 uptakes and vital capacities in Tibetan than Han residents of Lhasa. Neuroscience & Biobehavioral Reviews, 79(2), 151–162.

Verges, S., Rupp, T., Jubeau, M., Wuyam, B., Esteve, F., Levy, P., et al. (2012). Cerebral perturbations during exercise in hypoxia. American Journal of Physiology, 302(8), R903–R916.

Wagner, P. D. (2000). Reduced maximal cardiac output at altitude--mechanisms and significance. Respiration Physiology, 120(1), 1–11.

Waxman, A. B., & Zamanian, R. T. (2013). Pulmonary arterial hypertension: new insights into the optimal role of current and emerging prostacyclin therapies. American Journal of Cardiology, 111(5 Suppl), 1A–16A– quiz 17A–19A.

Wensel, R., Opitz, C. F., Ewert, R., Bruch, L., & Kleber, F. X. (2000). Effects of iloprost inhalation on exercise capacity and ventilatory efficiency in patients with primary pulmonary hypertension. Circulation, 101(20), 2388–2392.

Widdicombe, J. (2009). Lung afferent activity: Implications for respiratory sensation. Respiratory Physiology & Neurobiology, 167(1), 2–8.

Wu, T., & Kayser, B. (2006). High altitude adaptation in Tibetans. High Altitude Medicine & Biology, 7(3), 193–208.

Yang, T., Li, X., Qin, J., Li, S., Yu, J., Zhang, J., et al. (2014). High altitude-induced borderline pulmonary hypertension impaired cardiorespiratory fitness in healthy young men. International Journal of Cardiology, 181C, 382–388.

Zhou, Z.-N., Zhuang, J.-G., Wu, X.-F., Zhang, Y., & Cherdrungsi, P. (2008). Tibetans retained innate ability resistance to acute hypoxia after long period of residing at sea level. The Journal of Physiological Sciences : JPS, 58(3), 167–172.

Zhuang, J., Sutton, J., Droma, T., McCullough, R. E., McCullough, R. G., Groves, B. M., et al. (1993). Autonomic regulation of heart rate response to exercise in Tibetan and Han residents of Lhasa (3,658 m). Journal of Applied Physiology (Bethesda, Md. : 1985), 75(5), 1968–1973.


Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


  • There are currently no refbacks.